|
Pfister, L., Ueyama, R., Jensen, E. J., and M. R. Schoeberl, 2022. Deep convective cloud top altitudes at high temporal and spatial resolution. Earth and Space Science, 9, e2022EA002475, doi: 10.1029/2022EA002475.
|
|
Homeyer, C. R., and K. P. Bowman, 2022. Algorithm Description Document for Version 4.2 of the Three-Dimensional Gridded NEXRAD WSR-88D Radar (GridRad) Dataset, Technical Report.
|
|
Murillo, E. M., and C. R. Homeyer, 2022. What Determines Above-Anvil Cirrus Plume Infrared Temperature? J. Atmos. Sci., 79, 3181–3194, doi: 10.1175/JAS-D-22-0080.1.
|
|
Gordon, A. E., and C. R. Homeyer, 2022. Sensitivities of Cross-Tropopause Transport in Midlatitude Overshooting Convection to the Lower Stratosphere Environment, J. Geophys. Res. Atmos., 127, e2022JD036713, doi: 10.1029/2022JD036713.
|
|
Khlopenkov, K. V., Bedka, K. M., Cooney, J. W., and K. Itterly, 2021. Recent advances in detection of overshooting cloud tops from longwave infrared satellite imagery. J. Geophys. Res. Atmos., 127, e2020JD034359, doi: 10.1029/2020JD034359.
|
|
Li, Y., Dykema, J., Deshler, T., & Keutsch, F. (2021). Composition dependence of stratospheric aerosol shortwave radiative forcing in northern midlatitudes. Geophys. Res. Lett., 48, e2021GL094427, doi: 10.1029/2021GL094427.
|
|
Smith, J. B., 2021. Convective hydration of the stratosphere: Cirrus plumes above superstorm anvils are visible manifestations of a hydraulic jump. Science, 373, 1194–1195, doi: 10.1126/science.abl8740.
|
|
Chang, K., Bowman, K. P., Siu, L. W., and A. D. Rapp, 2021. Convective Forcing of the North American Monsoon Anticyclone at Intraseasonal and Interannual Time Scales. J. Atmos. Sci., 78, 2941–2956, doi: 10.1175/JAS-D-21-0009.1.
|
|
Homeyer, C. R., and K. P. Bowman, 2021. A 22-Year Evaluation of Convection Reaching the Stratosphere over the United States. J. Geophys. Res. Atmos., 126, doi: 10.1029/2021JD034808.
|
|
Clapp, C. E., Smith, J. B., Bedka, K. M., and J. G. Anderson, 2021. Identifying outflow regions of North American monsoon anticyclone-mediated meridional transport of convectively influenced air masses in the lower stratosphere. J. Geophys. Res. Atmos., 126, e2021JD034644, doi: 10.1029/2021JD034644.
|
|
Cooney, J. W., Bedka, K. M., Bowman, K. P., Khlopenkov, K. V., and K. Itterly, 2021. Comparing tropopause-penetrating convection identifications derived from NEXRAD and GOES over the contiguous United States. J. Geophys. Res. Atmos., 126, e2020JD034319, doi: 10.1029/2020JD034319.
|
|
Siu, L. W., and K. P. Bowman, 2020. Unsteady Vortex Behavior in the Asian Monsoon Anticyclone, J. Atmos. Sci., 77, 4067–4088, doi: 10.1175/JAS-D-19-0349.1.
|
|
Starzec, M., Mullendore, G., and C. Homeyer, 2020. Retrievals of Convective Detrainment Heights Using Ground-Based Radar Observations. J. Geophys. Res. Atmos., 125, e2020JD032637, doi: 10.1029/2019JD031164.
|
|
Wang, D., Jensen, M. P., D'lorio, J. A., Jozef, G., Giangrande, S. E., Johnson, K. L., Luo, Z. J., Starzec, M., and G. L. Mullendore, 2020. An Observational Comparison of Level of Neutral Buoyancy and Level of Maximum Detrainment in Tropical Deep Convective Clouds. J. Geophys. Res. Atmos., 125, e2020JD032637, doi: 10.1029/2020JD032637.
|
|
Liu, C., C. Liu, and L. Hayden, 2020. Climatology and Detection of Overshooting Convection From 4 Years of GPM Precipitation Radar and Passive Microwave Observations, J. Geophys. Res., 125, e2019JD032003, doi: 10.1029/2019JD032003.
|
|
Clapp, C. E., and J. G. Anderson, 2019. Modeling the effect of potential nitric acid removal during convective injection of water vapor over the Central United States on the chemical composition of the lower stratosphere. J. Geophys. Res. Atmos., 124,, 9743–9770, doi: 10.1029/2018JD029703.
|
|
Feng, Z., R.A. Houze, L.R. Leung, F. Song, J.C. Hardin, J. Wang, W.I. Gustafson, and C.R. Homeyer, 2019. Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains, J. Climate, 32, 7303–7328, doi: 10.1175/JCLI-D-19-0137.1.
|
|
Siu, L. W.*, and K. P. Bowman, 2019. Forcing of the upper-tropospheric monsoon anticyclones, J. Atmos. Sci., 76, 1937–1954, doi: 10.1175/JAS-D-18-0340.1.
|
|
Bedka, K., E.M. Murillo, C.R. Homeyer, B. Scarino, and H. Mersiovsky, 2018. The above-anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery, Weather and Forecasting, 33, 1159–1181, doi: 10.1175/WAF-D-18-0040.1.
|
|
Liu, N., and C. Liu, 2018: Synoptic environments and characteristics of convection reaching the tropopause over Northeast China, Mon. Wea. Rev., 146, 745–759, doi: 10.1175/MWR-D-17-0245.1.
|
|
Cooney, J. W., K. P. Bowman, C. R. Homeyer, and T. M. Fenske, 2018. Ten-year analysis of tropopause-overshooting convection using GridRad data, J. Geophys. Res., 123, 329–343, doi: 10.1002/2017JD0277181.
|
|
Smith, J. B., D. M. Wilmouth, K. M. Bedka, K. P. Bowman, C. R. Homeyer, J. A. Dykema, M. R. Sargent, C. E. Clapp, S. S. Leroy, D. S. Sayres, J. M. Dean-Day, T. P. Bui and J. G. Anderson, 2017. A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States, J. Geophys. Res., 122, 9529–9554, doi: 10.1002/2017JD026831.
|
|
Anderson, J. G., D. K. Weisenstein, K. P. Bowman, C. R. Homeyer, J. B. Smith, D. M. Wilmouth, D. S. Sayres, J. E. Klobas, S. S. Leroy, J. A. Dykema, and S. C. Wofsy, 2017. Stratospheric ozone over the United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis, Proc. Nat. Acad. Sci., 114, E4905–E4913, doi: 10.1073/pnas.1619318114.
|
|
Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection, J. Atmos. Sci., 74, 1617–1633, doi: 10.1175/JAS-D-16-0269.1.
|
|
Bedka, K.M. and K. Khlopenkov, 2016. A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations, J. Appl. Meteor. and Climatol., 55, 1985–2005, doi: 10.1175/JAMC-D-15-0249.1.
|
|
Liu, N., and C. Liu, 2016. Global distribution of deep convection reaching tropopause in one-year GPM observations, J. Geophys. Res., 121, doi: 10.1002/2015JD024430.
|
|
Solomon, D. L., K. P. Bowman, and C. R. Homeyer, 2016. Tropopause-penetrating convection from three-dimensional gridded NEXRAD data, J. Appl. Meteor. and Climatol., 55, 465–478, doi: 10.1175/JAMC-D-15-0190.1.
|